skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stowasser, Heiko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We describe a fast, abstract method for reverse engineering (RE) field programmable gate array (FPGA) look-up-tables (LUTs). Our method has direct applications to hardware (HW) metering and FPGA fingerprinting, and our approach allows easy portability and application to most L UT based FPGAs. Unlike conventional RE methodologies that rely on vendor specific code (like Xilinx XDL), tools, configuration files, components, etc., our methodology is not dependent on any specific FPGA or FPGA computer aided design (CAD) tool. We use generic hardware description language (HDL) code based on specially connected CASE statements to program the L UTs on a target FPGA. Our specially connected CASE statements allow us to guide placement of L UT functions on successive synthesis runs. This enables us to quickly determine which bits in the FPGA 's configuration file match to FPGA L UT bits. After we know which bits are L UT bits, we can go further and match specific LUT bits to specific bits in the configuration file, thereby creating a one-to-one mapping between every L UT memory cell and its matching bit in the configuration file. In this paper we present our CASE statement functions for performing one-to-one mapping of all FPGA L UT memory cell bits to specific configuration file bits. We have successfully applied our methods to several 7000 series Xilinx and Intel (Altera) FPGAs. 
    more » « less